有機物低温分解装置排ガス(ダイオキシン類)測定

報告書

2021 年 3 月

環境テクノス株式会社

有機物低温分解装置 (廃プラスチック)

1. 測定事項

測定場所	
測 定 施 設 名	有機物低温分解装置(廃プラスチック)
俳ガス 採取日時	2021年2月10日 (11:30~15:30)
ぱい煙 測定機関	環境テクノス株式会社
ばい煙 試料採取者	村上,藤野
ダイオキシン類 分析機関	公益財団法人 北九州生活科学センター

2. 測定方法

【ダイオキシン類】

排ガス : JIS K 0311: 2008(排ガス中のダイオキシン類の測定方法)

3. 排ガス性状

項	B	単位	測定結果				
水 :	分量	vol %	1.6				
排出ガ	ス温度	°C	125				
排出ガスを	乾速(平均)	m/s	1.3				
排出ガス量	湿	m³/h	196				
У Р Ц Д Л <u>Щ</u>	乾	m³/h	193				

4. 測定結果

測定結果[排ガス試料]

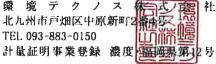
	項	目	単 位	排ガス
<i>y</i> 1		基準値	ng-TEQ/m ³	5
オキ	Total (P	CDDs + PCDFs)	ng-TEQ/m³	0.85
シン	То	al DL-PCB	ng-TEQ/m ³	0.16
類	Total ダイオ	キシン類(毒性当量)	ng-TEQ/m ³	1.0 ☆
		CO(実測値)	ppm	520
ì	車続計器	CO(12%換算值)	ppm	4700
((平均値)	俳出ガス温度	°C	30
		O ₂	vol %	20.3

[※] 基準値欄には参考値(大気汚染防止法の対象施設とみなした場合の値)を記載した。

[※] 合印は基準値との比較対照値。

[※] ダイオキシン類の海性当低の算出にはWHO-TEF(2006)を使用。

濃 度 計 量 証 明



御依頼先

御中

2021年2月26日 番号 2012G056B0209G

環境テクノス 北九州市戸畑区中原新町2 TEL 093-883-0150 計算は1911年第2843 2015年

貴社依頼の発生施設 〔 廃棄物焼却炉] に係るばい煙量等の計量結果を次のとおり証明します。

環境計量士

神野

測	定	H	時	2021	年	2	月	10	E	09 時 20 分 ~ 16 時 35 分
測定	Z 場 所	r·施	设名	有機物	加低温	分解	装置	(廃プ	ラスチ	チック)
能			カ	1						燃料の種類・使用量
測	定	箇	所	煙突						試験担当員 村上, 藤野

計量の結果

計	魮	の	対	象	単位	計量の結果	基	準値	定量	下限値	計	量	の	方	法
ば	V	`	ľ	ん	g/m³	0.024		=	0.0	009	JIS Z 8808 : 2013				
*о	2 換	算	濃	度	g/m³	0.21	(0.15	0.0	081	排ガス	4中のダ	スト濃度の	測定方法	
銮	素	酸	化	物	ppm	定量下限值未调		-	3		JIS K 0104 : 2011				
•о	2 換	算	濃	度	ppm	※ 定量下限值未満	:	250	50 27		排ガス	中の窒	素酸化物	分析法	
榹	黄	酸	化	物	ppm	定量下限值未満			0	0.5		JIS K 0103 : 2011			
* 排		出		壓	m³/h	定量下限值未满	C	0.20	0.00	0009	排ガス中の硫黄酸化物分析法				
-	酸	化	炭	楽	ppm	520		771	5	60	JIS K	0098 : 2	016		
* O	2 換	算	濃	度	ppm	4700		-	45	50	排ガス	中の一	酸化炭素	分析方法	
							以	下	余	白					
										~-					

★印は計量法第107条の計量証明対象外

排ガス性状

水	分	温 度	平均流速	湿りガス流量	乾きガス流量	O ₂ 計 濃 度
	1.6 %	(30) 125 ℃	1.3 m/s	196 m³/h	193 m³/h	20.3 %

考 傰

- ・基準値欄には参考値(大気汚染防止法の対象施設とみなした場合の値)を記載した。
- ・※印は基準値との比較対照値。
- ・温度の欄において()内の数値は、4時間連続測定の平均値。

計量の方法および計算式

番号 2012G056B0209G

計量の方法

計量の対象	∄†	1	の	方	法
排ガス水分	JIS Z 8808~7.1 吸泡	記管による方法			
排ガス組成	JIS K 0301-7.1 ガス	マ吸収法(オルザ)	ル式), JIS K 009	8-7.2 検知管法	
排ガス温度	JIS Z 8808-6 指示	熱電温度計による	方法		
排ガス流速	JIS Z 8808-8 ウェス	タン型ピトー管に	よる方法		
ばいじん濃度	JIS Z 8808-10 普通	形試料採取装置	円形ろ紙法(1	形)	
硫黄酸化物	JIS K 0103-7.1 イオ	・ンクロマトグラフィ	生		
窒素酸化物	JIS K 0104-8 自動	計測法(化学発光	法)		
酸素	JIS K 0301-8 自動	計測法(磁気式)			
一酸化炭素	JIS K 0098-8 自動	計測法(赤外線吸	収法)		
ダイオキシン類	JIS K 0311 JIS Z 88	108に準じた捕集	方法,GC/MS法		

計算式

・ばいじん(ダスト)流量(kg/h)

 $S = \overline{C} \times Q'_{N} \times 10^{-3}$

水分量測定記録表

番号 2012G056B0209G

水分	业	測定記録

大気圧力 (Pa): 102.2 kPa 法 JIS Z 8808 排ガス中のダスト濃度の測定方法 紶 料 番 号 定 畤 11 : 02 ~ 11 : 10 11 : 10 ~ 11 : 18 定 麗 位 a-0 a-0 吸引ガス流量 qm (L/min) 2.0 2.0 前 ガ 就 V_1 (L) 249.98 265.85 後 統 4 V_2 (L) 265.85282.15 吸引ガス盤 Vm (L) 15.87 16.30 Æ Pm (kPa) 0.03 カ 0.03 温 度 θ m (°C) 10.0 10.0 θmの飽和水蒸気圧 Pv (kPa) 1.2281 1.2281 吸湿管番号 23 28 29 22 吸湿管測定後質量 ma_2 (g) 190.77 162,10 188.02 186.92 吸湿管測定前質量 190.51 ma_l (g) 162.10 187.87 186.92 付着水分質壓 ma (g) 0.26 0.15 値 水 Xw (%) 2.07 1.17 平 均 Xw (%) 水 1.6

計算式

· 水分量 (%)
$$Xw = \frac{\frac{22.41}{18.02} \text{ ma}}{V_{\text{m}} \times \frac{273.15}{273.15 + \theta \text{ m}} \times \frac{Pa + Pm - Pv}{101.32} + \frac{22.41}{18.02} \text{ ma}} \times 100$$

ガス組成分析結果記録表

番号 2012G056B0209G

ガス組成(vol%)

Г				JIS K 0301 排	ガス中の酸素分析方法	(オルザット式ガス吸収	!法)					
分	分析方法		法	JIS K 0098 排	JIS K 0098 - 排ガス中の一酸化炭素分析法(検知管法)							
試	料	番	号	ı	2	3	平均					
採	取	位.	쌑	a-0			-					
採	取	時	間	11 : 20			=					
		CO_2		0.4								
組		O ₂		20.3			= -					
成	СО			0.1>								
		N ₂		79.2								

ガス密度(kg/m³)

	`			温度 273.15 K (0 ℃), 気圧 101.32 kPa に換算した湿り排ガスの密度 (ρ、)
計	箅	結	果	1.28

計算式

$$\rho_{\times} = \frac{1}{22.41 \times 100} \times \{ [44 \times CO_2 + 32 \times O_2 + 28 (CO + N_2)] \times (1 - \frac{\overline{Xw}}{100}) + 18.02 \times \overline{Xw} \}$$

備考

・不等号〉は定風下限値未満を示す。

流速・温度 測定記録表

番号 2012G056B0209G

流速·温度 測定条件

大	気	圧	カ	Pa (kPa)	102.2		
傾斜	マノメー	- 夕封液	密度	ρm (g/cm ³)	1.00	封 被	水
傾斜	マノメ	ータ拡	大率	k (倍)	10		
년°	-	管 係	数	c (-)	0.851		

流速·温度 測定記録

=		_	門儿子	_	_	_	_									
雉		· 験		方		法	JIS 7	2 8808	非ガス中	のダス	ト濃度	の測定	方法			
測		定		時		間		=		11 :	18 ~ 1	1 : 19				
7	ノメ	- 5	零	点の	統	み	h'	(Pa)	動	動圧		620		全 圧		20
測		定		位		Z		~	a-0							
7							h	(Pa)	630							
17	動	圧	Ø	3	te lu	み	h ₂	(Pa)	630							
X I							h ₃	(Pa)								
9	全.	Æ	Ø)	ŧ	Ē	4	ht'	(Pa)	-660							
	実	際	の	9	b t	圧	Pd	(Pa)	1.00							
排	実	際	の	4	È	圧	ht	(Pa)	-4.0							
ガ	静					Æ	Ps	(kPa)	0.00							
ス	温					度	θs	(°C)	125							
測	湿	り排	# ;	くの	密	度	ρ	(kg/m³)	1.28							
定	排	ガ	ス	の	Æ	度	ρ	(kg/m^3)	0.886							
値	流					速	υ	(m/s)	1.28							
light.	坪	į	ঠ্য	流		速	υ	(m/s)		1.3						
H	7	ト	断	面	ī	橨	Α	(m ²)		0.0615						
湿	ŋ	排	ガ	ス i	舵	敝	Q,	(m^3/h)		196	(計算	値: 1	95.9)			
乾	ਣੈ	排	ガ	ス i	舵	肚	Q',	(m ³ /h)		193	(計算	値: 1	92.7)			

計算式

Ps =
$$(ht - c^2 \times Pd)$$
 / 1000 (ウェスタン型)

$$\rho = \rho \times \frac{273.15}{273.15 + \theta s} \times \frac{Pa + Ps}{101.32}$$

$$o = c \sqrt{\frac{2Pd}{\rho}}$$

$$Q_N = A \times \overline{u} \times \frac{273.15}{273.15 + \overline{\theta} s} \times \frac{Pa + \overline{Ps}}{101.32} \times 60 \times 60$$

・乾き排ガス流
$$(m^3/h)$$
 $Q'_N = Q_N \times (1 - \overline{X_W})$

備 考

ミストの有無確認結果

番号 2012G056B0209G

排ガス中の水蒸気の分圧算出に必要な測定データ

付	着	水	分	趾	ma (g)	0.21
上記	採取時	の乾き	吸引力	/ス量	V、 (L)	15.47
排	ガ	ス	温	度	0 s (°C)	125

排ガス中の水蒸気の分圧算出結果

水	蒸	気	圧	e (Pa)	2401
---	---	---	---	--------	------

水蒸気圧から求めた排ガスの露点温度

ff ル へ の 瞬 点 温 度 td (C) 20	排ガスの露点温度	td (℃)	20
--------------------------------	----------	--------	----

ミストの有無判定

	,	削定	項	El		判 定		判定	根	拠	
3	ス	٢	の	有	無	無	排ガス露点温度	20℃	<	排ガス温度	125℃

備考

・露点温度の求め方

排ガス温度と水分量測定データから算出した絶対湿度から水蒸気圧を求め、その水蒸気圧を飽和水蒸気圧 とする温度。

① 水蒸気圧 e (Pa) の算出

湿潤空気(排ガス)中の水蒸気の分圧は、以下の式から求める。

$$e = p \chi_v = \frac{ma}{V} \frac{RT}{M_v} = d_v \frac{RT}{M_v}$$

p (Pa)

: 湿潤空気の圧力

χ, (mol/mol)

: 湿潤空気中の水蒸気の物質量と全体の物質量との比(モル分率)

ma (g)

= 湿潤空気中の水蒸気の質量(水分量測定データ中の付着水分量)

: 湿潤空気の体積

 $V = (V_x + 22.41/18.02 \times ma) \times 10^{-3}$

V、: 水分量測定データ中の乾き吸引ガス量 (L)

R (Pa·m³·mol¹·K¹) : 気体定数 8.314472

T (K)

∷ 湿潤空気の温度(℃)+273.15 (絶対温度)

 M_v (g/mol)

* 水のモル質量 18.02

 $d_v = (g/m^3)$

※湿潤空気の単位体積中にある水蒸気の質量(絶対湿度)

② 露点温度 td (℃)

JIS Z 8808:2013 の 表3-水の飽和蒸気圧、または、JIS Z 8806:2001 の 付表1.1 水の飽和蒸気圧 に おいて、上式より求められた水蒸気圧に近似する飽和水蒸気圧に対応する温度。

ばいじん濃度測定計算書

番号 2012G056B0209G

等速吸引流量の計算

大気圧力 (Pa): 102.2 kPa

試験方法	JIS Z 8808	排ガス	中のダ	スト濃	度の測	定方法			
ノズルロ径	d (mm)		21.9						
測定位置		a-0							
等速吸引流量	qm (L/min)	20.5							
測定位置	20								
等速吸引流量	qm (L/min)								

ばいじん(ダスト) 濃度測定記録

100.4	いしん(グヘト) 威及側足記割				
試	料番号	-		l	2
測	定 時 間		11:31	- 12:01	
測	定 位 置	(H)	a	-0	
	前 読 み	V ₁ (L)	0	.0	
	後 読 み	V ₂ (L)	60	0.0	
ガス	吸引ガス獣	Vm (L)	60	0.0	
я 1	圧 力	Pm (kPa)	0.	54	
g	温 度	θm (°C)	17	7.0	
	θmの飽和水蒸気圧	Pv (kPa)		•	
	乾き吸引ガス量	V' _N (m ³)	0.5	728	
	種 類		円形ろ紙	ミスト捕集器	
	番号	-	27		
	捕集後質量	m ₂ (g)	0.0998	(E)	
測	捕集前質量	m ₁ (g)	0.0858	127	
	各捕集質量	md (g)	0.0140	=	
定	捕集質量	md (g)	0.01	40	
~	改 度	$C_N (g/m^3)$	0.02	44	
	平均濃度	$\overline{C_{V}}$ (g/m ³)	0.02	4	
値	標準酸素濃度	On (%)	1	2	
	残存酸素濃度	Os (%)	20	1.4	
	O ₂ 換 算 濃 度	C (g/m ³)	0.22	0	
	平均 〇2 換 算 濃 度	\overline{C} (g/m^3)	0.21		
ば	いじん(ダスト)流 量	S (kg/h)	0.04	0	

計 箅 式

・等速吸引流量 (L/min)
$$qm = \frac{\pi}{4} \times d^2 v \left(1 - \frac{\overline{Xw}}{100}\right) \times \frac{273.15 + \theta m}{273.15 + \theta s} \times \frac{Pa + Ps}{Pa + Pm - Pv} \times 60 \times 10^{-3}$$

・ぱいじん(ダスト)濃度 (g/m^3) $C_N = \frac{md}{V_N^*}$

・ばいじん(ダスト)濃度
$$(g/m^3)$$
 $C_N = \frac{md}{V'_N}$ ・ばいじん(ダスト)流量 (kg/h) ・ばいじん O_2 換算濃度 (g/m^3) $C = \frac{21-On}{21-Os} \times C_N$ $S = \overline{C} \times Q'_N \times 10^{-3}$

硫黄酸化物濃度算出書

番号 2012G056B0209G

試料ガス採取記録

大気圧力 (Pa) : 102.2 kPa

試		枓	摄	ŧ	号	-	1	2	3
測		定	位		置		a-0	a-0	
測		定	時	į	間		11:35:~ 11:57	11 : 58 ~ 12 : 20	=======================================
	吸	링	ガス	旅	做	qm (L/min)	1.0	1.0	
	荊		統		み	V _i (L)	283.36	305.36	
ارا	後		統		み	V ₂ (L)	305.36	327.37	
ガスメ	吸	引	ガ	ス	R	Vm (L)	22.00	22.01	
9	圧				力	Pm (kPa)	0.02	0.02	
	温				度	t (°C)	11.0	11.3	
	θn	nのf	包和水	蒸泵	任	Pv (kPa)	1.3129	1.3393	
	乾	きり	k 31 :	ガス	献	Vs (L)	21.06	21.04	

分析結果

分	析	方	法	JIS K	0103-7.1	排ガス中の硫黄酸化物	分析方法(イオンクロマト	グラフ法)
紙	料	番	号		(-	1	2	3
		ら求めンの機		а	(mg/mL)	0.0000	0.0000	
同	上 空	試 験	値	b	(mg/mL)	0.0000	0.0000	
定	Ž.	ş	敝	v	(mL)	100	100	
濃			度	С	(ppm)	0.5 >	0.5 >	
平	均	濃	度	c	(ppm)	0.5 >		

乾き	排ガ	ス	流	量	Q' _N (m ³ /h)	193
排	Ж			盘	S (m ³ /h)	0.00009 >

計算式

$$V_{S} = V_{m} \times \frac{273.15}{273.15 + t} \times \frac{P_{a} + P_{m} - P_{v}}{101.32}$$

$$C = \frac{0.233 \times (a - b) \times v}{V_{S}} \times 1000$$

$$S = \overline{C} \times Q'_{N} \times 10^{-6}$$

- ・不等号〉は定盤下限値未満を示す。
- ・平均濃度は定量下限値(0.5 ppm) として計算した。
- ・排出量は定量下限値(0.5 ppm)を用いて計算した。

硫黄酸化物基準值算出書

番号 2012G056B0209G

計算結果

湿り排ガス流量	Q _\ (m ³ /h)	196
乾き排ガス流量	Q'、 (m³/h)	193
15℃における俳出 偸	Q (m³/s)	0.057
排ガス速度	V (m/s)	1.29
俳ガス温度	т (°К)	398.15
排出口断面積	A (m²)	0.0615
運動量による上昇高さ	Hm (m)	<u>a</u>
温度による上昇高さ	Ht (m)	
排出口の実高さ	H _O (m)	4.0
補正された排出口の高さ	He (m)	
K 値	К (-)	13.0
ウェザーキャップ等)— (—)	有
基 準 値	q (m³/h)	0.20

計算式

 $Q = Q_{N} \times (273.15 + 15)/273.15 \times 1/3600$

 $V = Q_N \times T/273.15 \times 1/A \times 1/3600$

 $J = 1/\sqrt{Q \times V} \times [1460 - 296 \times V/(T - 288)] + 1$

 $Hm = 0.795\sqrt{Q \times V}/(1 + 2.58/V)$

Ht = $2.01 \times 10^{-3} \times Q (T - 288) \times (2.30 \log J + 1/J - 1)$

He = Ho + 0.65 (Hm + Ht) ※ ただし、ウェザーキャップ等が "有" の場合 He=Ho。

 $q = K \times He^2 \times 10^{-3}$

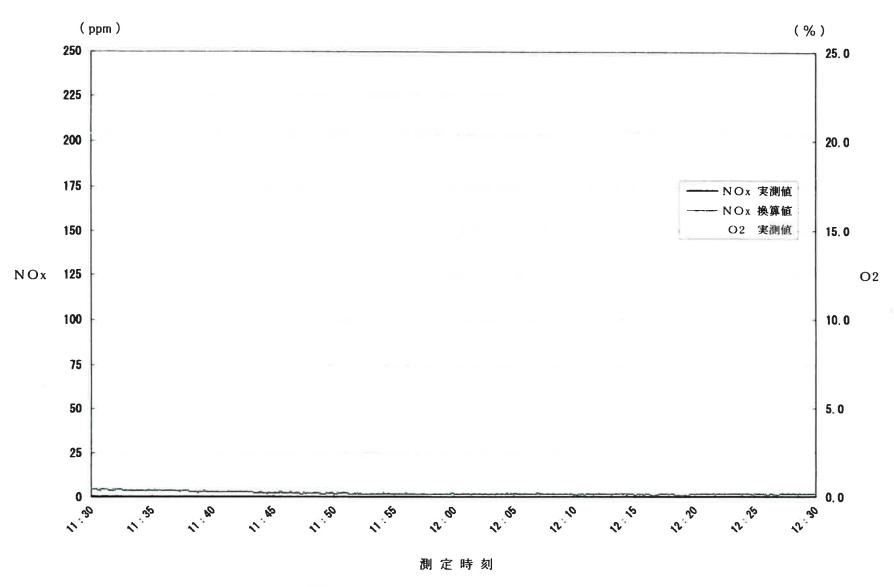
NOx, O2実測值, 12%換算NOx値測定結果

番号 2012G056B0209G

测定条件

試料採取方法	JIS K 0095	NOx 計レンジ	0 ~	250 ppm
測定方法	JIS K 0104-8 自動計測法	O ₂ 計レンジ	0 ~	25 %
測定機器	堀場製作所 PG-340	標準酸素濃度	On =	12 %

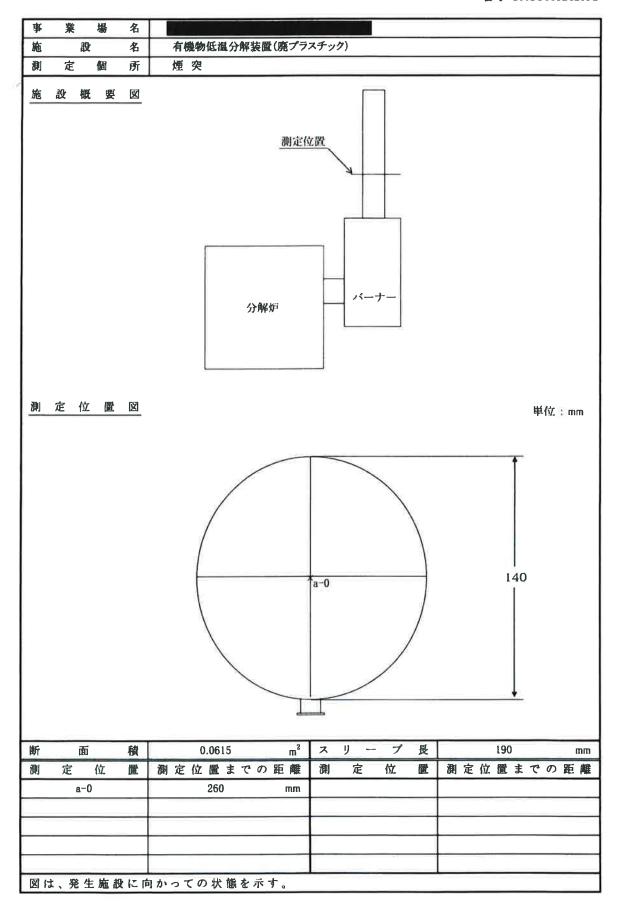
測定結果


		10 分間平均値			
測定時間	NOx実測値 (ppm)	O ₂ 実測値 (%)	NOx換算値 (ppm)		
11:30~11:40	3 >	20.3	27 >		
11:40~11:50	3 >	20.3	27 >		
11:50~12:00	3 >	20.3	27 >		
12:00~12:10	3 >	20.3	27 >		
12:10~12:20	3 >	20.4	27 >		
12:20~12:30	3 >	20.4	27 >		
平 均 値	3 >	20.4	27 >		
最大値	3 >	20.5	27 >		
最 小 値	3 >	20.3	27 >		

計算式

窒素酸化物濃度の計算方法(酸素 12% 換算)

12% 換算NOx値 =
$$\frac{21-12}{21-O_2}$$
 × NOx(実測値) ※ ただし、 O_2 濃度が 20.0% を超える 場合は 20.0%とする。


- ___________________ ・不等号 > は定量下限値未満を示す。 ・一 + 準の場合は、 ・NOx実測値が 3 ppm 未満の場合は、3 ppm (定量下限値)として計算した。
 - ・NOx実測値、O2実測値及びNOx換算値は、1秒毎の採取データ及び換算値を平均したものを記載した。
 - ・NOx実測値及びNOx換算値の平均値は、切り捨て処理により丸めた。

NOx, O2実測値, 12% 換算NOx値の経時変化図

測 定 位 置 図

番号 2012G056B0209G

排ガス中のダイオキシン類試料採取記録

番号 2012G056B0209G

測定日:2021年2月10日

等速吸引	186	計篇.	ж

等速	吸引流量	第出					大気圧: 1	02.2 kPa
7	ズノ	V D	径	d	(mm)	14.0		
測	定	位	置		=	a-0		
箒	速 吸	引流	砒	qm	(L/min)	8.4		

ダイオキシン類測定記録

測定時間	-	11:30 ~ 15:30
ガスメータ前 読み	V _I (L)	29500.0
ガスメータ後 読 み	V ₂ (L)	31802.0
吸引ガス量(湿)	Vm (L)	2302.0
吸引ガス量(乾)	V、 (L)	2168.1
吸引ガス盤(乾)	V'\ (m³)	2.1681
平均ガスメータ圧力	Pm (kPa)	0.04
平均ガスメータ温度	θ m (℃)	19.5
θ m の飽和水蒸気圧	Pv (kPa)	=

等速吸引流量調整記録

マノメータ零点の読み	h' (Pa)	動圧	620	全 圧	620
測 定 時 間	=	11 : 50	12:30	13 : 30	14:30
7	h _i (Pa)	630	630	630	630
リ 動 圧 の 読 み	h ₂ (Pa)	630	630	630	630
1 1	h ₃ (Pa)				
夕全圧の読み	ht' (Pa)	-630	630	630	630
実際の動圧	Pd (Pa)	1.00	1.00	1.00	1.00
実際の全圧	ht (Pa)	-1.0	1.0	1.0	1.0
静圧	Ps (kPa)	0.00	0.00	0.00	0.00
排ガス温度	θs (°C)	50	33	24	21
湿り排ガス密度	ρ (kg/m³)		1.28		
排ガスの密度	ρ (kg/m ³)	1.09	1.15	1.19	1.20
流 速	υ (m/s)	1.15	1.12	1.10	1.10
水分	Xw (%)		1.6		
ガスメータ圧力	Pm (kPa)	0.04	0.04	0.04	0.04
ガスメータ温度	θm (℃)	20.3	19.9	19.9	18.6
0 mの飽和水蒸気圧	Pv (kPa)	45	:-:	=	-
等 速 吸 引 流	qm (L/min)	9.5	9.7	9.9	9.9
実等速吸引流量	(L/min)	9.4	9.5	9.8	10.0

酸素濃度および温度管理による精度確認

測	定	時	間	1	11 : 50	12:30	13:30	14:30
Ħ	スメ	一夕出	1 11	%	20.3	20.3	20.3	20.4
連	続	測定	機	%	20.3	20.3	20.3	20.4
液体	本捕集部	の冷却水	温度	С	0.0	0.0	0.0	0.0
ろ組	(捕集部	の試料ガス	温度	°C	85	86	85	80

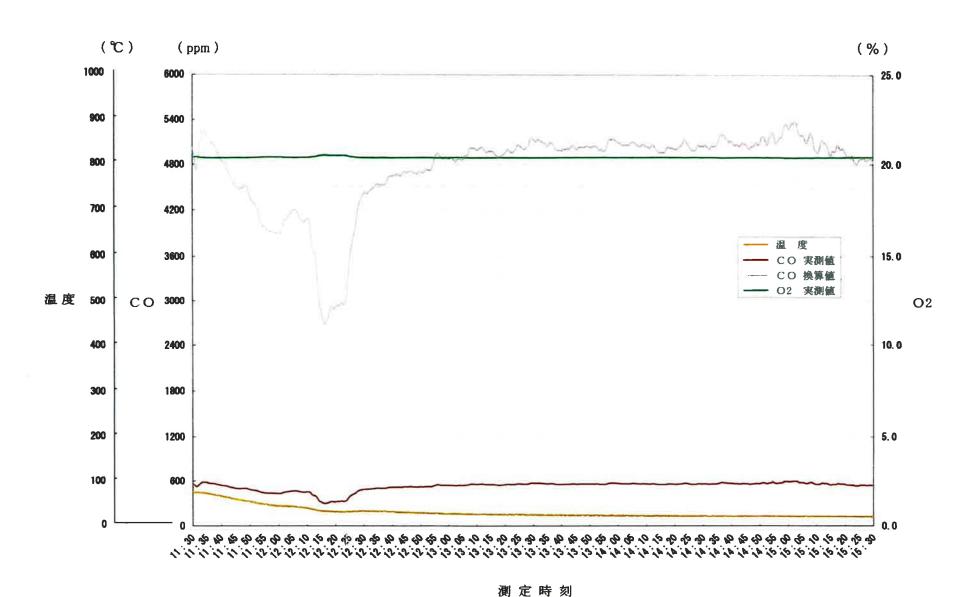
CO, O₂実測値, 12%換算CO値および温度測定結果

番号 2012G056B0209G

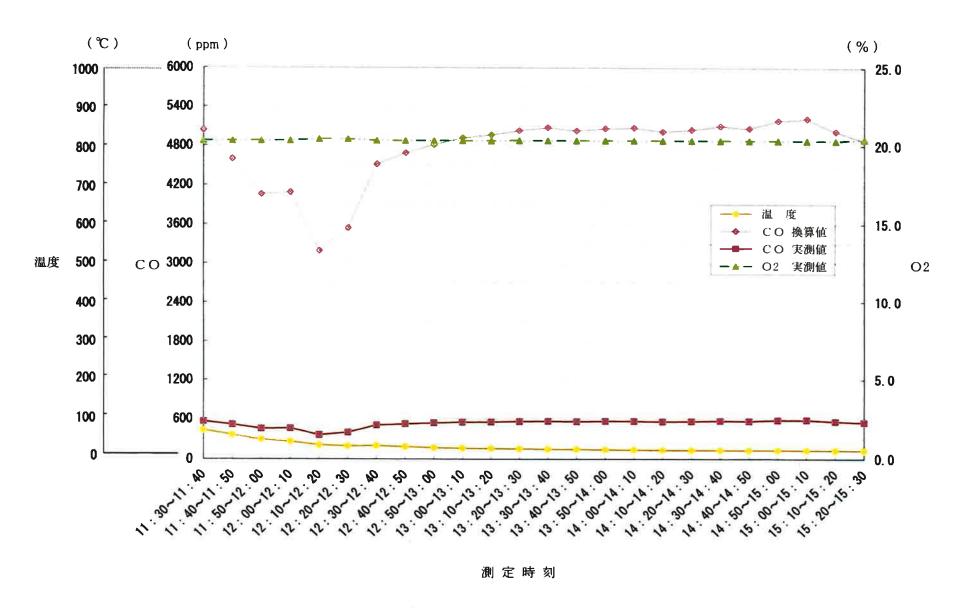
測定条件

試料採取方法	JIS K 0095	CO 計レンジ	0 ~	5000 ppm
測定方法	JIS K 0098 自動計測法	O ₂ 計レンジ	0 ~	25 %
測定機器	堀場製作所 PG-340	標準酸素濃度	On =	12 %
温度計	K 熱電対	温度計レンジ	0 ~	1000 ℃

測定結果


即及班本				
		10 分 間	平 均 値	
測定時刻	CO実測値	O₂実測値	換算CO値	温度
	(ppm)	(vol%)	(ppm)	(℃)
11 : 30 ~ 11 : 40	559	20.3	5037	72
11 : 40 ~ 11 : 50	510	20.3	4593	60
11 : 50 ~ 12 : 00	450	20.3	4057	48
12 : 00 ~ 12 : 10	454	20.3	4086	42
12 : 10 ~ 12 : 20	355	20.4	3195	34
12 : 20 ~ 12 : 30	393	20.4	3544	31
12 : 30 ~ 12 : 40	502	20.3	4518	32
12 : 40 ~ 12 : 50	520	20.3	4683	30
12 : 50 ~ 13 : 00	535	20.3	4815	27
13 : 00 ~ 13 : 10	546	20.3	4917	26
13 : 10 ~ 13 : 20	551	20.3	4964	25
13 : 20 ~ 13 : 30	558	20.3	5028	24
13 : 30 ~ 13 : 40	563	20.3	5073	24
13 : 40 ~ 13 : 50	558	20.3	5026	23
13 : 50 ~ 14 : 00	562	20.3	5058	23
14 : 00 ~ 14 : 10	563	20.3	5072	22
14 : 10 ~ 14 : 20	556	20.3	5012	22
14 : 20 ~ 14 : 30	560	20.3	5043	21
14 : 30 ~ 14 : 40	566	20.3	5097	21
14 : 40 ~ 14 : 50	562	20.3	5063	21
14 : 50 ~ 15 : 00	575	20.3	5178	21
15 : 00 ~ 15 : 10	579	20.3	5211	21
15 : 10 ~ 15 : 20	557	20.3	5018	20
15 : 20 ~ 15 : 30	541	20.4	4875	20
平 均 値	520	20.3	4700	30
最 大 値	590	20.5	5386	77
战 小 値	290	20.3	2686	19

計算式


一酸化炭素濃度の計算方法(酸素 12%換算)

12% 換算CO値 = $\frac{21-12}{21-O_2}$ × CO(実測値) ※ ただし、 O_2 機度が 20.0% を超える 場合は 20.0%とする。

- 備 考
 ・CO実測値、O₂実測値及びCO換算値は、1秒毎の採取データ及び換算値を平均したものを記載した。
 - ・CO実測値及びCO換算値の平均値は、切り捨て処理により丸めた。

CO,O2実測値,12%換算CO値および温度の経時変化図

CO,O2実測値,12% 換算CO値および温度(10分間平均値)

濃度計量証明書

No. D2200032

2021年3月4日

公益財団法人 北九州生活科学也 北九州市戸畑区中原新町 1 番 4 号 TEL(093)881-8282 FAX(093)881-8333

認定番号 N-0033-01 計量証明事業登録番号 福岡県 第1号

計量管理者 境

貴殿御依頼の試料の計量結果を次のとおり証明します。

試 料 名	排ガス[有機物低温分解装置(廃プラスチック)]			
受付、試料採取 年月日	受付年月日: 試料採取年月日: 2021年2月10日			
試 料 採 取 者 環境テクノス株式会社				

計 量 結 果 (ダイオキシン類)

8	計量の対象	実 測 濃 度 (ng/m³)	换算濃度 (ng/m³, O ₂ : 12%)	毒性当量 (ng-TEQ/m³)		
Tot	al (PCDDs+PCDFs)	9.8	88	0.85		
	Total DL-PCBs	1.9	17	0.16		
(PCDI	Total Ds+PCDFs+DL-PCBs)	12	110	1.0		
計量方法	排ガス中のダイオキシン類の測定方法 (JIS K0311:2020)					
備考	PCDDs:ポリ塩化ジベンゾパラジオキシン PCDFs:ポリ塩化ジベンゾフラン DL-PCBs:ダイオキシン様PCB 毒性当量は、計量証明対象外の項目である。 各濃度は、標準状態(0℃、101.325kPa)の試料ガス1m³中の数値である。 各濃度は個別に桁まるめを行うため、表記上各Total値が合わなくなる場合がある。 当センターはこの試料について採取を行っていない。 工番:2012G056B					

排ガス「有機物低温分解装置(廃プラスチック)]

	「ス[有機物低温分解装置(廃プラン		換算濃度	試料に	おける	毒性等価	毒性当量
	化合物の名称等	実測濃度	(O ₂ :12%)	定量下限值	検出下限値	係數	TEQ
		ng/m³	ng/m³	ng/m³	ng/m³	TEF	ng-TEQ/m ³
	1.3.6.8-TeCDD	0.41	3.7	0.0020	0.0008	-	ng /Lu/III
	1.3.7.9-TeCDD	0.22	2.0	0.0020	0.0008	-	
	2.3.7.8-TeCDD	0.021	0.19	0.0020	0.0008	1	0.19
Р	TeCE		13			:=	0.19
C	1.2.3.7.8-PeCDD	0.021	0.19	0.0020	0.0008	1	0.19
D	PeCE		6.2		5.000		0.19
D	1,2,3,4,7,8-HxCDD	0.009	0.084	0.006	0.002	0.1	0.0084
	1,2,3,6,7,8-HxCDD	0.016	0.14	0.006	0.002	0.1	0.014
	1,2,3,7,8,9-HxCDD	0.010	0.092	0.006	0.002	0.1	0.0092
	HxCD	Ds 0.39	3.5			1=	0.0316
	1,2,3,4,6,7,8-HpCDD	0.045	0.40	0.006	0.002	0.01	0.0040
	HpCE	Ds 0.098	0.88				0.0040
	OCDD	0.048	0.44	0.010	0.004	0.0003	0.000132
	Total PCD	Da 2.6	24			9	0.415732
	1,2,7,8-TeCDF	0.30	2.7	0.0020	0.0008	-	
	2,3,7,8-TeCDF	0.16	1.4	0.0020	0.0008	0.1	0.14
	TeC	Fs 5.4	49			-	0.14
Р	1,2,3,7,8-PeCDF	0.056	0.50	0.0020	0.0008	0.03	0.0150
C	2,3,4,7,8-PeCDF	0.069	0.62	0.0020	0.0008	0.3	0.186
D	PeCD	Fs 1.3	12			_	0.2010
F	1,2,3,4,7,8-HxCDF	0.036	0.32	0.006	0.002	0.1	0.032
	1.2,3,6,7,8-HxCDF	0.033	0.30	0.006	0.002	0.1	0.030
	1,2,3,7,8,9-HxCDF	ND	ND	0.006	0.002	0.1	0
	2,3,4,6,7,8-HxCDF	0.032	0.29	0.006	0.002	0.1	0.029
	HxCD		3.4				0.091
	1,2,3,4,6,7.8-HpCDF	0.045	0.41	0.006	0.002	0.01	0.0041
	1.2.3.4,7.8.9-HpCDF	(0.006)	(0.051)	0.006	0.002	0.01	0
	HpCD		0.65			_	0.0041
	OCDF	(800.0)	(0.073)	0.010	0.004	0.0003	0
	Total PCD		65			-	0.4361
	Total (PCDDs+PCD	The second secon	88				0.851832
	3.4.4',5-TeCB(#81)	0.16	1.4	0.006	0.002	0.0003	0.00042
	3,3',4,4'-TeCB(#77)	0.95	8.5	0.006	0.002	0.0001	0.00085
	3,3',4,4',5−PeCB(#126)	0.17	1.5	0.006	0.002	0.1	0.15
D	3,3',4,4',5,5'-HxCB(#169)	0.018	0.16	0.006	0.002	0.03	0.0048
L	ノンオルト		12			-	0.15607
1	2',3,4,4',5-PeCB(#123)	0.021	0.19	0.006	0.002	0.00003	0.0000057
	2,3',4,4',5-PeCB(#118)	0.31	2.8	0.006	0.002	0.00003	0.000084
-	2,3,3',4,4'-PeCB(#105)	0.18	1.6	0.006	0.002	0.00003	0.000048
В	2,3,4,4',5-PeCB(#114)	0.024	0.22	0.006	0.002	0.00003	0.0000066
	2,3',4,4',5,5'-HxCB(#167)	0.017	0.15	0.006	0.002	0.00003	0.0000045
	2,3,3',4,4',5-HxCB(#156)	0.038	0.35	0.006	0.002	0.00003	0.0000105
	2,3,3',4,4',5'-HxCB(#157)	0.018	0.16	0.006	0.002	0.00003	0.0000048
	2,3,3',4,4',5,5'-HpCB(#189)	0.013	0.12	0.006	0.002	0.00003	0.0000036
	モノオルト		5.6			-	0.0001677
_	Total DL-PC		17			-	0.1562377
	Total (PCDDs+PCDFs+DL-PCE	(s) 12	110			-	1.0

備考 1.実測濃度の括弧付きの数値は、検出下限値以上で定量下限値未満の濃度であることを示す。

- 2.実測濃度の"ND"は、検出下限値未満であることを示す。
 3.毒性等価係数(TEF)は、WHO-TEF(2006)を適用した。
 4.毒性当量TEQは、定量下限値未満の実測濃度を0(を口)として算出したものである。
- 5.試料の採取量は、2.1681m3である。
- 6.酸素濃度の平均値は、20.3%である(酸素濃度が20%を超える場合は20%として換算する)。 7.各濃度は個別に桁まるめを行うため、表記上各Total値が合わなくなる場合がある。

2. ガスクロマトグラフ質量分析計の測定条件

1. [Method1]

①測定装置: Agilent 6890 Series Gas Chromatograph-AutoSpec Premier

②GC条件

カラム:BPX-DXN (SGE 社製) 0.25 mm×60 m

昇温条件:150℃ (1 min)

150°C→220°C 20°C/min 220°C→260°C 2°C/min 260°C→320°C 5°C/min

320℃

hold(3.5 min)

注入口温度:300℃ キャリアガス:ヘリウム 試料注入量:1.0μL

2. [Method2]

①測定装置: Agilent 6890 Series Gas Chromatograph-AutoSpec Premier

②GC条件

カラム: RH-12ms (INVENTX 社製) 0.25 mm×60 m

昇温条件:150℃ (1 min)

150°C→210°C 10°C/min 210°C→280°C 3°C/min 280°C→320°C 10°C/min 320°C hold(10 min)

注入口温度:300℃ キャリアガス:ヘリウム 試料注入量:1.0μL

3. MS の条件

分解能: 10,000以上 イオン化電流: 0.75 mA イオン源温度: 300℃

検出方法 : ロックマス方式によるSIM 法

有機物低温分解装置排ガス(ダイオキシン類)測定

報告書

2021 年 3 月

有機物低温分解装置 (廃プラスチック)

1. 測定事項

測定場所				
測 定 施 設 名	有機物低温分解装置(廃プラスチック)			
俳ガス 採取日時	2021年2月10日 (11:30~15:30)			
ぱい煙 測定機関	環境テクノス株式会社			
ばい煙 試料採取者	村上,藤野			
ダイオキシン類 分析機関	公益財団法人 北九州生活科学センター			

2. 測定方法

【ダイオキシン類】

排ガス : JIS K 0311: 2008(排ガス中のダイオキシン類の測定方法)

3. 排ガス性状

項目		単位	測定結果
水 分 凰		vol %	1.6
排出ガ	排出ガス温度		125
排出ガスを	俳 出 ガス 流 速 (平 均)		1.3
排出ガス量	湿	m³/h	196
97 ロルヘ 里	乾	m³/h	193

4. 測定結果

測定結果[排ガス試料]

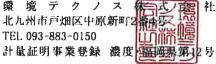
	項	目	単 位	排ガス
<i>y</i> 1		基準値	ng-TEQ/m ³	5
オキ	Total (P	CDDs + PCDFs)	ng-TEQ/m³	0.85
シン	То	al DL-PCB	ng-TEQ/m ³	0.16
類	Total ダイオ	キシン類(毒性当量)	ng-TEQ/m ³	1.0 ☆
		CO(実測値)	ppm	520
ì	車続計器	CO(12%換算值)	ppm	4700
((平均値)	俳出ガス温度	°C	30
		O ₂	vol %	20.3

[※] 基準値欄には参考値(大気汚染防止法の対象施設とみなした場合の値)を記載した。

[※] 合印は基準値との比較対照値。

[※] ダイオキシン類の海性当低の算出にはWHO-TEF(2006)を使用。

濃 度 計 量 証 明



御依頼先

御中

2021年2月26日 番号 2012G056B0209G

環境テクノス 北九州市戸畑区中原新町2 TEL 093-883-0150 計算は1911年第2843 2015年

貴社依頼の発生施設 〔 廃棄物焼却炉] に係るばい煙量等の計量結果を次のとおり証明します。

環境計量士

神野

測	定	H	時	2021	年	2	月	10	E	09 時 20 分 ~ 16 時 35 分
測定	Z 場 所	r·施	设名	有機物	加低温	分解	装置	(廃プ	ラスチ	チック)
能			カ	1						燃料の種類・使用量
測	定	箇	所	煙突						試験担当員 村上, 藤野

計量の結果

計	魮	の	対	象	単位	計量の結果	基	準値	定量	下限値	計	量	の	方	法
ば	V	`	ľ	ん	g/m³	0.024		=	0.0	009	JIS Z	8808 : 2	013		
*о	2 換	算	濃	度	g/m³	0.21	(0.15	0.0	081	俳ガス中のダスト濃度の測定方法				
銮	素	酸	化	物	ppm	定量下限值未调		-	:	3	JIS K	0104 : 2	2011	2	
•о	2 換	算	濃	度	ppm	※ 定量下限值未満	:	250	2	27	排ガス	中の窒	素酸化物	分析法	
榹	黄	酸	化	物	ppm	定量下限值未満			0	.5	JIS K	0103 : 2	2011		
* 排		出		壓	m³/h	定量下限值未満	C	0.20	0.00	0009	排ガス	(中の硫	黄酸化物質	分析法	
-	酸	化	炭	楽	ppm	520		771	5	60	JIS K	0098 : 2	016		
* O	2 換	算	濃	度	ppm	4700		-	45	50	排ガス	中の一	酸化炭素	分析方法	
							以	下	余	白					
										~-					

★印は計量法第107条の計量証明対象外

排ガス性状

水	分	温 度	平均流速	湿りガス流量	乾きガス流量	O ₂ 計 濃 度
	1.6 %	(30) 125 ℃	1.3 m/s	196 m³/h	193 m³/h	20.3 %

考 傰

- ・基準値欄には参考値(大気汚染防止法の対象施設とみなした場合の値)を記載した。
- ・※印は基準値との比較対照値。
- ・温度の欄において()内の数値は、4時間連続測定の平均値。

計量の方法および計算式

番号 2012G056B0209G

計量の方法

計量の対象	∄†	1	の	方	法							
排ガス水分	JIS Z 8808~7.1 吸泡	記管による方法										
排ガス組成	JIS K 0301-7.1 ガス	JIS K 0301-7.1 ガス吸収法(オルザット式), JIS K 0098-7.2 検知管法										
排ガス温度	JIS Z 8808-6 指示	熱電温度計による	方法									
排ガス流速	JIS Z 8808-8 ウェス	タン型ピトー管に	よる方法									
ばいじん濃度	JIS Z 8808-10 普通	形試料採取装置	円形ろ紙法(1	形)								
硫黄酸化物	JIS K 0103-7.1 イオ	・ンクロマトグラフィ	生									
窒素酸化物	JIS K 0104-8 自動	計測法(化学発光	法)									
酸素	JIS K 0301-8 自動	計測法(磁気式)										
一酸化炭素	JIS K 0098-8 自動	計測法(赤外線吸	収法)									
ダイオキシン類	JIS K 0311 JIS Z 88	108に準じた捕集	方法,GC/MS法									

計算式

・ばいじん(ダスト)流量(kg/h)

 $S = \overline{C} \times Q'_{N} \times 10^{-3}$

水分量測定記録表

番号 2012G056B0209G

大気圧力 (Pa): 102.2 kPa 法 JIS Z 8808 排ガス中のダスト濃度の測定方法 紶 料 番 号 定 畤 11 : 02 ~ 11 : 10 11 : 10 ~ 11 : 18 定 麗 位 a-0 a-0 吸引ガス流量 qm (L/min) 2.0 2.0 前 ガ 就 V_1 (L) 249.98 265.85 後 統 4 V_2 (L) 265.85282.15 吸引ガス盤 Vm (L) 15.87 16.30 Æ Pm (kPa) 0.03 カ 0.03 温 度 θ m (°C) 10.0 10.0 θmの飽和水蒸気圧 Pv (kPa) 1.2281 1.2281 吸湿管番号 23 28 29 22 吸湿管測定後質量 ma_2 (g) 190.77 162,10 188.02 186.92 吸湿管測定前質量 190.51 ma_l (g) 162.10 187.87 186.92 付着水分質壓 ma (g) 0.26 0.15 値 水 Xw (%) 2.07 1.17 平 均 Xw (%) 水 1.6

計算式

· 水分量 (%)
$$Xw = \frac{\frac{22.41}{18.02} \text{ ma}}{V_{\text{m}} \times \frac{273.15}{273.15 + \theta \text{ m}} \times \frac{Pa + Pm - Pv}{101.32} + \frac{22.41}{18.02} \text{ ma}} \times 100$$

ガス組成分析結果記録表

番号 2012G056B0209G

ガス組成(vol%)

Г				JIS K 0301 排	ガス中の酸素分析方法	(オルザット式ガス吸収	!法)
分	析	方	法	JIS K 0098 排	ガス中の一酸化炭素分	折法(検知管法)	
試	料	番	号	ı	2	3	平均
採	取	位	쌑	a-0			-
採	取	時	間	11 : 20			=
		CO_2		0.4			
組		O ₂		20.3			= -
成		СО		0.1>			
		N ₂		79.2			

ガス密度(kg/m³)

	`			温度 273.15 K (0 ℃), 気圧 101.32 kPa に換算した湿り排ガスの密度 (ρ、)
計	箅	結	果	1.28

計算式

$$\rho_{\times} = \frac{1}{22.41 \times 100} \times \{ [44 \times CO_2 + 32 \times O_2 + 28 (CO + N_2)] \times (1 - \frac{\overline{Xw}}{100}) + 18.02 \times \overline{Xw} \}$$

備考

・不等号〉は定風下限値未満を示す。

流速・温度 測定記録表

番号 2012G056B0209G

流速·温度 測定条件

大	気	圧	カ	Pa (kPa)	102.2		
傾斜	マノメー	- 夕封液	密度	ρm (g/cm ³)	1.00	封 被	水
傾斜	マノメ	ータ拡	大率	k (倍)	10		
년°	-	管 係	数	c (-)	0.851		

流速·温度 測定記録

=		_	門儿子	_	_	_	_									
雉		· 験		方		法	JIS 7	2 8808	非ガス中	のダス	ト濃度	の測定	方法			
測		定		時		間		=		11 :	18 ~ 1	1 : 19				
7	ノメ	- 5	零	点の	統	み	h'	(Pa)	動	Œ	6	20	仓	ΣE	6	20
測		定		位		Z		~	a-0							
7							h	(Pa)	630							
17	動	圧	Ø	3	te lu	み	h ₂	(Pa)	630							
X I							h ₃	(Pa)								
9	全.	Æ	Ø)	ŧ	Ē	4	ht'	(Pa)	-660							
	実	際	の	9	b t	圧	Pd	(Pa)	1.00							
排	実	際	の	4	È	圧	ht	(Pa)	-4.0							
ガ	静					Æ	Ps	(kPa)	0.00							
ス	温					度	θs	(°C)	125							
測	湿	り排	# ;	くの	密	度	ρ	(kg/m³)	1.28							
定	排	ガ	ス	の	Æ	度	ρ	(kg/m^3)	0.886							
値	流					速	υ	(m/s)	1.28							
light.	坪	į	ঠ্য	流		速	υ	(m/s)		1.3						
H	7	ト	断	面	ī	橨	Α	(m ²)		0.0615						
湿	ŋ	排	ガ	ス i	舵	敝	Q,	(m^3/h)		196	(計算	値: 1	95.9)			
乾	ਣੈ	排	ガ	ス i	舵	肚	Q',	(m ³ /h)		193	(計算	値: 1	92.7)			

計算式

Ps =
$$(ht - c^2 \times Pd)$$
 / 1000 (ウェスタン型)

$$\rho = \rho \times \frac{273.15}{273.15 + \theta s} \times \frac{Pa + Ps}{101.32}$$

$$o = c \sqrt{\frac{2Pd}{\rho}}$$

$$Q_N = A \times \overline{u} \times \frac{273.15}{273.15 + \overline{\theta} s} \times \frac{Pa + \overline{Ps}}{101.32} \times 60 \times 60$$

・乾き排ガス流
$$(m^3/h)$$
 $Q'_N = Q_N \times (1 - \overline{X_W})$

備 考

ミストの有無確認結果

番号 2012G056B0209G

排ガス中の水蒸気の分圧算出に必要な測定データ

付	着	水	分	趾	ma (g)	0.21
上記	採取時	の乾き	吸引力	/ス量	V、 (L)	15.47
排	ガ	ス	温	度	0 s (°C)	125

排ガス中の水蒸気の分圧算出結果

水	蒸	気	圧	e (Pa)	2401
---	---	---	---	--------	------

水蒸気圧から求めた排ガスの露点温度

ff ル へ の 瞬 点 温 度 td (C) 20	排ガスの露点温度	td (℃)	20
--------------------------------	----------	--------	----

ミストの有無判定

	,	削定	項	El		判 定		判定	根	拠	
3	ス	٢	の	有	無	無	排ガス露点温度	20℃	<	排ガス温度	125℃

備考

・露点温度の求め方

排ガス温度と水分量測定データから算出した絶対湿度から水蒸気圧を求め、その水蒸気圧を飽和水蒸気圧 とする温度。

① 水蒸気圧 e (Pa) の算出

湿潤空気(排ガス)中の水蒸気の分圧は、以下の式から求める。

$$e = p \chi_v = \frac{ma}{V} \frac{RT}{M_v} = d_v \frac{RT}{M_v}$$

p (Pa)

: 湿潤空気の圧力

χ, (mol/mol)

: 湿潤空気中の水蒸気の物質量と全体の物質量との比(モル分率)

ma (g)

= 湿潤空気中の水蒸気の質量(水分量測定データ中の付着水分量)

: 湿潤空気の体積

 $V = (V_x + 22.41/18.02 \times ma) \times 10^{-3}$

V、: 水分量測定データ中の乾き吸引ガス量 (L)

R (Pa·m³·mol¹·K¹) : 気体定数 8.314472

T (K)

∷ 湿潤空気の温度(℃)+273.15 (絶対温度)

 M_v (g/mol)

* 水のモル質量 18.02

 $d_v = (g/m^3)$

※湿潤空気の単位体積中にある水蒸気の質量(絶対湿度)

② 露点温度 td (℃)

JIS Z 8808:2013 の 表3-水の飽和蒸気圧、または、JIS Z 8806:2001 の 付表1.1 水の飽和蒸気圧 に おいて、上式より求められた水蒸気圧に近似する飽和水蒸気圧に対応する温度。

ばいじん濃度測定計算書

番号 2012G056B0209G

等速吸引流量の計算

大気圧力 (Pa): 102.2 kPa

試験方法	JIS Z 8808	JIS Z 8808 排ガス中のダスト濃度の測定方法									
ノズルロ径	d (mm)		21.9								
測定位置		a-0									
等速吸引流量	qm (L/min)	20.5									
測定位置	20										
等速吸引流量	qm (L/min)										

ばいじん(ダスト) 濃度測定記録

100.4	いしん(グヘト) 威及側足記割				
試	料番号	-		l	2
測	定 時 間		11:31	- 12:01	
測	定 位 置	(H)	a	-0	
	前 読 み	V ₁ (L)	0	.0	
	後 読 み	V ₂ (L)	60	0.0	
ガス	吸引ガス獣	Vm (L)	60	0.0	
я 1	圧 力	Pm (kPa)	0.	54	
g	温 度	θm (°C)	17	7.0	
	θmの飽和水蒸気圧	Pv (kPa)		•	
	乾き吸引ガス量	V' _N (m ³)	0.5	728	
	種 類		円形ろ紙	ミスト捕集器	
	番号	-	27		
	捕集後質量	m ₂ (g)	0.0998	(E)	
測	捕集前質量	m ₁ (g)	0.0858	127	
	各捕集質量	md (g)	0.0140	=	
定	捕集質量	md (g)	0.01	40	
~	改 度	$C_N (g/m^3)$	0.02	44	
	平均濃度	$\overline{C_{V}}$ (g/m ³)	0.02	4	
値	標準酸素濃度	On (%)	1	2	
	残存酸素濃度	Os (%)	20	1.4	
	O ₂ 換 算 濃 度	C (g/m ³)	0.22	0	
	平均 〇2 換 算 濃 度	\overline{C} (g/m^3)	0.21		
ば	いじん(ダスト)流 量	S (kg/h)	0.04	0	

計 箅 式

・等速吸引流量 (L/min)
$$qm = \frac{\pi}{4} \times d^2 v \left(1 - \frac{\overline{Xw}}{100}\right) \times \frac{273.15 + \theta m}{273.15 + \theta s} \times \frac{Pa + Ps}{Pa + Pm - Pv} \times 60 \times 10^{-3}$$

・ぱいじん(ダスト)濃度 (g/m^3) $C_N = \frac{md}{V_N^*}$

・ばいじん(ダスト)濃度
$$(g/m^3)$$
 $C_N = \frac{md}{V'_N}$ ・ばいじん(ダスト)流量 (kg/h) ・ばいじん O_2 換算濃度 (g/m^3) $C = \frac{21-On}{21-Os} \times C_N$ $S = \overline{C} \times Q'_N \times 10^{-3}$

硫黄酸化物濃度算出書

番号 2012G056B0209G

試料ガス採取記録

大気圧力(Pa): 102.2 kPa

	17.0	PICTO		_							3 (1 a) 1 100/0 Ki a
試		料		番		号		-	1	2	3
測		定		位.		置		**	a-0	a-0	
測		定		時		間		-	11:35 ~ 11:57	11:58 ~ 12:20	
	吸	31	ガ	ス	ờfc	肽	qm	(L/min)	1.0	1.0	
	前		å	売		4	V,	(L.)	283.36	305.36	
	後		íž R	Ť.		4	V ₂	(L)	305.36	327.37	
ガスメ	吸	引	7	ц	ス	I k	Vm	(L)	22.00	22.01	
イータ	圧					力	Pm	(kPa)	0.02	0.02	
	温					度	t	(℃)	11.0	11.3	
	θ n	nの£	包和	1水	蒸気	Œ	Pv	(kPa)	1.3129	1.3393	
	乾	きり	k 9	ース	1 ス	厭	Vs	(L)	21.06	21.04	

分析結果

分	析	方	法	JIS K 0103-7.1	排ガス中の硫黄酸化物	排ガス中の硫黄酸化物分析方法 (イオンクロマトグラフ法)		
绳	料	番	号	(),	1	2	3	
	量 線 か 酸 イ オ			a (mg/mL)	0.0000	0.0000		
同	上 空	試 験	値	b (mg/mL)	0.0000	0.0000		
定	稻	ř	獻	v (mL)	100	100		
濃			度	C (ppm)	0.5 >	0.5 >		
平	均	濃	度	C (ppm)	0.5 >			

乾き	排ガ	ス	流	量	Q' _N (m ³ /h)	193
排	Ж			盘	S (m ³ /h)	0.00009 >

計算式

$$V_{S} = V_{m} \times \frac{273.15}{273.15 + t} \times \frac{P_{a} + P_{m} - P_{v}}{101.32}$$

$$C = \frac{0.233 \times (a - b) \times v}{V_{S}} \times 1000$$

$$S = \overline{C} \times Q'_{N} \times 10^{-6}$$

- ・不等号〉は定盤下限値未満を示す。
- ・平均濃度は定量下限値(0.5 ppm) として計算した。
- ・排出量は定量下限値(0.5 ppm)を用いて計算した。

硫黄酸化物基準值算出書

番号 2012G056B0209G

計算結果

湿り排ガス流量	Q _\ (m ³ /h)	196
乾き排ガス流量	Q'、 (m³/h)	193
15℃における俳出 偸	Q (m³/s)	0.057
排ガス速度	V (m/s)	1.29
俳ガス温度	т (°К)	398.15
排出口断面積	A (m²)	0.0615
運動量による上昇高さ	Hm (m)	<u>a</u>
温度による上昇高さ	Ht (m)	
排出口の実高さ	H _O (m)	4.0
補正された排出口の高さ	He (m)	
K 値	К (-)	13.0
ウェザーキャップ等)— (—)	有
基 準 値	q (m³/h)	0.20

計算式

 $Q = Q_{N} \times (273.15 + 15)/273.15 \times 1/3600$

 $V = Q_N \times T/273.15 \times 1/A \times 1/3600$

 $J = 1/\sqrt{Q \times V} \times [1460 - 296 \times V/(T - 288)] + 1$

 $Hm = 0.795\sqrt{Q \times V}/(1 + 2.58/V)$

Ht = $2.01 \times 10^{-3} \times Q (T - 288) \times (2.30 \log J + 1/J - 1)$

He = Ho + 0.65 (Hm + Ht) ※ ただし、ウェザーキャップ等が "有" の場合 He=Ho。

 $q = K \times He^2 \times 10^{-3}$

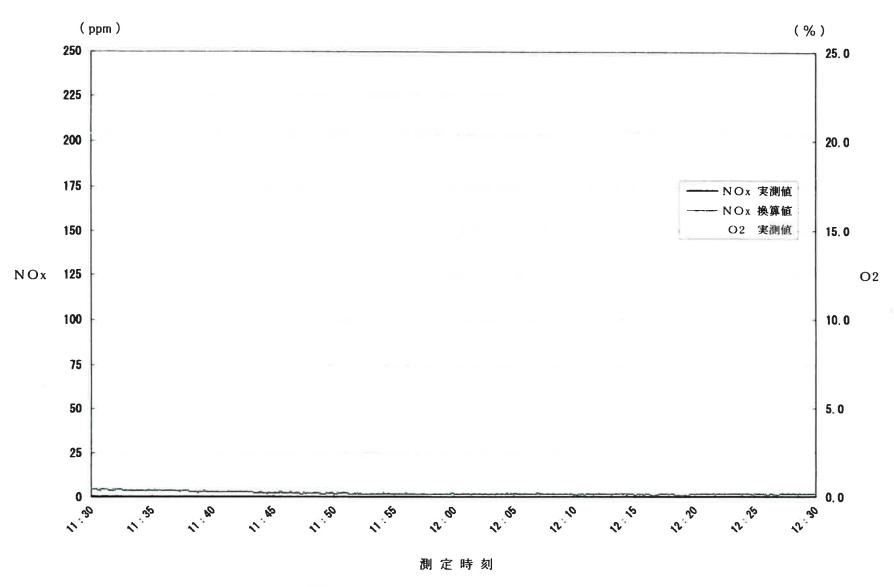
NOx, O2実測值, 12%換算NOx値測定結果

番号 2012G056B0209G

测定条件

試料採取方法	JIS K 0095	NOx 計レンジ	0 ~	250 ppm
測定方法	JIS K 0104-8 自動計測法	O ₂ 計レンジ	0 ~	25 %
測定機器	堀場製作所 PG-340	標準酸素濃度	On =	12 %

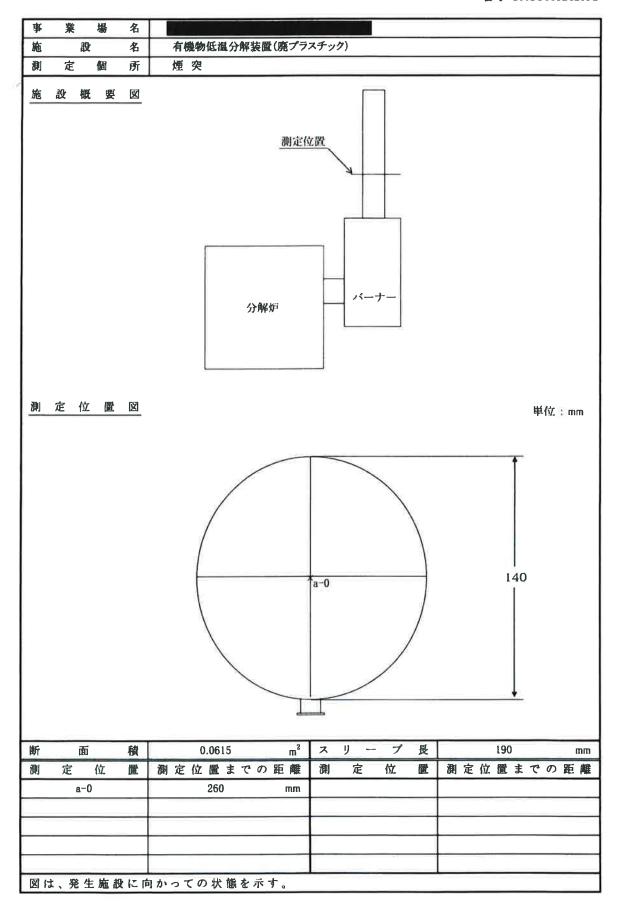
測定結果


		10 分間平均値	
測定時間	NOx実測値 (ppm)	O ₂ 実測値 (%)	NOx換算値 (ppm)
11:30~11:40	3 >	20.3	27 >
11:40~11:50	3 >	20.3	27 >
11:50~12:00	3 >	20.3	27 >
12:00~12:10	3 >	20.3	27 >
12:10~12:20	3 >	20.4	27 >
12:20~12:30	3 >	20.4	27 >
平 均 値	3 >	20.4	27 >
最大値	3 >	20.5	27 >
最 小 値	3 >	20.3	27 >

計算式

窒素酸化物濃度の計算方法(酸素 12% 換算)

12% 換算NOx値 =
$$\frac{21-12}{21-O_2}$$
 × NOx(実測値) ※ ただし、 O_2 濃度が 20.0% を超える 場合は 20.0%とする。


- ___________________ ・不等号 > は定量下限値未満を示す。 ・一 + 準の場合は、 ・NOx実測値が 3 ppm 未満の場合は、3 ppm (定量下限値)として計算した。
 - ・NOx実測値、O2実測値及びNOx換算値は、1秒毎の採取データ及び換算値を平均したものを記載した。
 - ・NOx実測値及びNOx換算値の平均値は、切り捨て処理により丸めた。

NOx, O2実測値, 12% 換算NOx値の経時変化図

測 定 位 置 図

番号 2012G056B0209G

排ガス中のダイオキシン類試料採取記録

番号 2012G056B0209G

測定日:2021年2月10日

等速吸引	186	計篇.	ж

等速	吸引流量	第出					大気圧: 1	02.2 kPa
7	ズノ	V D	径	d	(mm)	14.0		
測	定	位	置		=	a-0		
箒	速 吸	引流	砒	qm	(L/min)	8.4		

ダイオキシン類測定記録

測定時間	-	11:30 ~ 15:30
ガスメータ前 読み	V _I (L)	29500.0
ガスメータ後 読 み	V ₂ (L)	31802.0
吸引ガス量(湿)	Vm (L)	2302.0
吸引ガス量(乾)	V、 (L)	2168.1
吸引ガス盤(乾)	V'\ (m³)	2.1681
平均ガスメータ圧力	Pm (kPa)	0.04
平均ガスメータ温度	θ m (℃)	19.5
θ m の飽和水蒸気圧	Pv (kPa)	=

等速吸引流量調整記録

マノメータ零点の読み	h' (Pa)	動圧	620	全 圧	620
測 定 時 間	=	11 : 50	12:30	13 : 30	14:30
7	h _i (Pa)	630	630	630	630
リ 動 圧 の 読 み	h ₂ (Pa)	630	630	630	630
1 1	h ₃ (Pa)				
夕全圧の読み	ht' (Pa)	-630	630	630	630
実際の動圧	Pd (Pa)	1.00	1.00	1.00	1.00
実際の全圧	ht (Pa)	-1.0	1.0	1.0	1.0
静圧	Ps (kPa)	0.00	0.00	0.00	0.00
排ガス温度	θs (°C)	50	33	24	21
湿り排ガス密度	ρ (kg/m³)		1.28		
排ガスの密度	ρ (kg/m ³)	1.09	1.15	1.19	1.20
流 速	υ (m/s)	1.15	1.12	1.10	1.10
水分	Xw (%)		1.6		
ガスメータ圧力	Pm (kPa)	0.04	0.04	0.04	0.04
ガスメータ温度	θm (℃)	20.3	19.9	19.9	18.6
0 mの飽和水蒸気圧	Pv (kPa)	45	:-:	=	-
等 速 吸 引 流	qm (L/min)	9.5	9.7	9.9	9.9
実等速吸引流量	(L/min)	9.4	9.5	9.8	10.0

酸素濃度および温度管理による精度確認

測	定	時	間		11 : 50	12:30	13:30	14:30
Ħ	スメ	一夕出	4 11	%	20.3	20.3	20.3	20.4
連	続	測定	機	%	20.3	20.3	20.3	20.4
液体	本捕集部	の冷却水	温度	°	0.0	0.0	0.0	0.0
ろ組	(捕集部	の試料ガス	温度	r	85	86	85	80

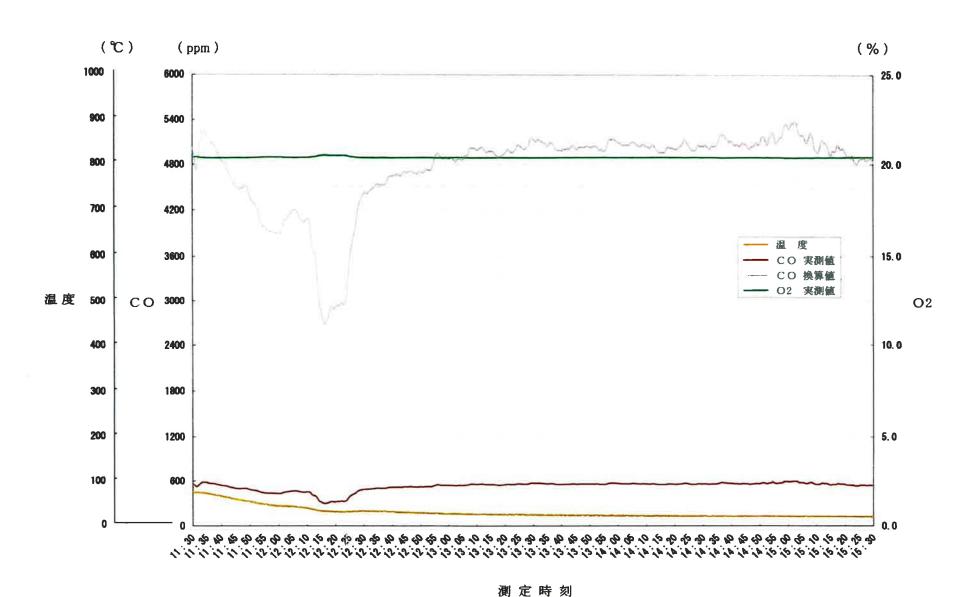
CO, O₂実測値, 12%換算CO値および温度測定結果

番号 2012G056B0209G

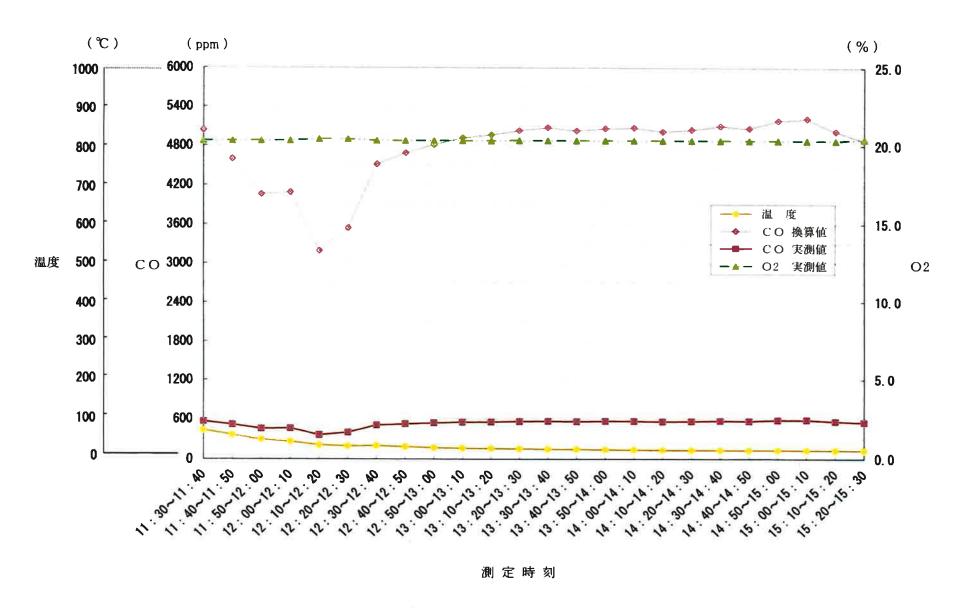
測定条件

試料採取方法	JIS K 0095	CO 計レンジ	0 ~	5000 ppm
測定方法	JIS K 0098 自動計測法	O ₂ 計レンジ	0 ~	25 %
測定機器	堀場製作所 PG-340	標準酸素濃度	On =	12 %
温度計	K 熱電対	温度計レンジ	0 ~	1000 ℃

測定結果


即及班本						
	10 分 間 平 均 値					
測定時刻	CO実測値	O₂実測値	換算CO値	温度		
	(ppm)	(vol%)	(ppm)	(℃)		
11 : 30 ~ 11 : 40	559	20.3	5037	72		
11 : 40 ~ 11 : 50	510	20.3	4593	60		
11 : 50 ~ 12 : 00	450	20.3	4057	48		
12 : 00 ~ 12 : 10	454	20.3	4086	42		
12 : 10 ~ 12 : 20	355	20.4	3195	34		
12 : 20 ~ 12 : 30	393	20.4	3544	31		
12 : 30 ~ 12 : 40	502	20.3	4518	32		
12 : 40 ~ 12 : 50	520	20.3	4683	30		
12 : 50 ~ 13 : 00	535	20.3	4815	27		
13 : 00 ~ 13 : 10	546	20.3	4917	26		
13 : 10 ~ 13 : 20	551	20.3	4964	25		
13 : 20 ~ 13 : 30	558	20.3	5028	24		
13 : 30 ~ 13 : 40	563	20.3	5073	24		
13 : 40 ~ 13 : 50	558	20.3	5026	23		
13 : 50 ~ 14 : 00	562	20.3	5058	23		
14 : 00 ~ 14 : 10	563	20.3	5072	22		
14 : 10 ~ 14 : 20	556	20.3	5012	22		
14 : 20 ~ 14 : 30	560	20.3	5043	21		
14 : 30 ~ 14 : 40	566	20.3	5097	21		
14 : 40 ~ 14 : 50	562	20.3	5063	21		
14 : 50 ~ 15 : 00	575	20.3	5178	21		
15 : 00 ~ 15 : 10	579	20.3	5211	21		
15 : 10 ~ 15 : 20	557	20.3	5018	20		
15 : 20 ~ 15 : 30	541	20.4	4875	20		
平 均 値	520	20.3	4700	30		
最 大 値	590	20.5	5386	77		
战 小 値	290	20.3	2686	19		

計算式


一酸化炭素濃度の計算方法(酸素 12%換算)

12% 換算CO値 = $\frac{21-12}{21-O_2}$ × CO(実測値) ※ ただし、 O_2 機度が 20.0% を超える 場合は 20.0%とする。

- 備 考
 ・CO実測値、O₂実測値及びCO換算値は、1秒毎の採取データ及び換算値を平均したものを記載した。
 - ・CO実測値及びCO換算値の平均値は、切り捨て処理により丸めた。

CO,O2実測値,12%換算CO値および温度の経時変化図

CO,O2実測値,12% 換算CO値および温度(10分間平均値)

濃度計量証明書

No. D2200032

2021年3月4日

公益財団法人 北九州生活科学也 北九州市戸畑区中原新町 1 番 4 号 TEL(093)881-8282 FAX(093)881-8333

認定番号 N-0033-01 計量証明事業登録番号 福岡県 第1号

計量管理者 境

貴殿御依頼の試料の計量結果を次のとおり証明します。

試 料 名	排ガス[有機物低温分解装置(廃プラスチック)]				
受付、試料採取 受付年月日: 試料採取年月日: 2021年2月10日 2021年2月10日					
試料採取者	環境テクノス株式会社				

計 量 結 果 (ダイオキシン類)

8	計量の対象	実 測 濃 度 (ng/m³)	换算	毒性当量 (ng-TEQ/m³)			
Tot	al (PCDDs+PCDFs)	9.8	88	0.85 0.16 1.0			
	Total DL-PCBs	1.9	17				
(PCDI	Total Ds+PCDFs+DL-PCBs)	12	110				
計量方法	計 量 排ガス中のダイオキシン類の測定方法 方 (JIS K0311:2020)						
法 ### PCDDs:ポリ塩化ジベンゾパラジオキシン PCDFs:ポリ塩化ジベンゾフラン DL-PCBs:ダイオキシン様PCB #### 春性当量は、計量証明対象外の項目である。 各濃度は、標準状態(0℃、101.325kPa)の試料ガス1m³中の数値である。 - 各濃度は個別に桁まるめを行うため、表記上各Total値が合わなくなる場合がある。 当センターはこの試料について採取を行っていない。 工番:2012G056B							

排ガス「有機物低温分解装置(廃プラスチック)]

		スチック)]	換算濃度	試料に	おける	毒性等価	毒性当量
	化合物の名称等	実測濃度	(O ₂ :12%)	定量下限值	検出下限値	係數	TEQ
		ng/m³	ng/m³	ng/m³	ng/m³	TEF	ng-TEQ/m ³
	1.3.6.8-TeCDD	0.41	3.7	0.0020	0.0008	-	ing redrift
	1,3,7,9-TeCDD	0.22	2.0	0.0020	0.0008	-	
	2.3.7.8-TeCDD	0.021	0.19	0.0020	0.0008	1	0.19
Р	TeC		13			:=	0.19
C	1.2.3.7.8-PeCDD	0.021	0.19	0.0020	0.0008	1	0.19
D	PeC		6.2		3.000		0.19
D	1,2,3,4,7,8-HxCDD	0.009	0.084	0.006	0.002	0.1	0.0084
	1,2,3,6,7,8-HxCDD	0.016	0.14	0.006	0.002	0.1	0.014
	1,2,3,7,8,9-HxCDD	0.010	0.092	0.008	0.002	0.1	0.0092
	HxC	DDs 0.39	3.5			ima	0.0316
	1,2,3,4,6,7,8-HpCDD	0.045	0.40	0.006	0.002	0.01	0.0040
	HpC	ODs 0.098	0.88				0.0040
	OCDD	0.048	0.44	0.010	0.004	0.0003	0.000132
	Total PC	DDa 2.6	24				0.415732
	1,2,7,8-TeCDF	0.30	2.7	0.0020	0.0008	-	
	2,3,7,8-TeCDF	0.16	1.4	0.0020	0.0008	0.1	0.14
	TeC	DFs 5.4	49			-	0.14
Р	1,2,3,7,8-PeCDF	0.056	0.50	0.0020	0.0008	0.03	0.0150
С	2,3,4,7,8-PeCDF	0.069	0.62	0.0020	0.0008	0.3	0.186
D	PeC	DFs 1.3	12			_	0.2010
F	1,2,3,4,7,8-HxCDF	0.036	0.32	0.006	0.002	0.1	0.032
	1.2,3,6,7,8-HxCDF	0.033	0.30	0.006	0.002	0.1	0.030
	1,2,3,7,8,9-HxCDF	ND	ND	0.006	0.002	0.1	0
	2,3,4,6,7,8-HxCDF	0.032	0.29	0.006	0.002	0.1	0.029
	HxC		3.4				0.091
	1,2,3,4,6,7.8-HpCDF	0.045	0.41	0.006	0.002	0.01	0.0041
	1.2.3.4,7.8.9-HpCDF	(0.006)	(0.051)	0.006	0.002	0.01	0
	HpC		0.65			-	0.0041
	OCDF	(800.0)	(0.073)	0.010	0.004	0.0003	0
	Total PC		65			-	0.4361
	Total (PCDDs+PCD	Fs) 9.8	88				0.851832
	3.4.4',5-TeCB(#81)	0.16	1.4	0.006	0.002	0.0003	0.00042
	3,3',4,4'-TeCB(#77)	0.95	8.5	0.006	0.002	0.0001	0.00085
	3,3',4,4',5−PeCB(#126)	0.17	1.5	0.006	0.002	0.1	0.15
D	3,3',4,4',5,5'-HxCB(#169)	0.018	0.16	0.006	0.002	0.03	0.0048
L	ノンオル		12			-	0.15607
1	2',3,4,4',5-PeCB(#123)	0.021	0.19	0.006	0.002	0.00003	0.0000057
	2,3',4,4',5-PeCB(#118)	0.31	2.8	0.006	0.002	0.00003	0.000084
- 1	2,3,3',4,4'-PeCB(#105)	0.18	1.6	0.006	0.002	0.00003	0.000048
В	2,3,4,4',5-PeCB(#114)	0.024	0.22	0.006	0.002	0.00003	0.0000066
	2,3',4,4',5,5'-HxCB(#167)	0.017	0.15	0.006	0.002	0.00003	0.0000045
	2,3,3',4,4',5-HxGB(#156)	0.038	0.35	0.006	0.002	0.00003	0.0000105
	2,3,3',4,4',5'-HxCB(#157)	0.018	0.16	0.006	0.002	0.00003	0.0000048
	2,3,3',4,4',5,5'~HpCB(#189)	0.013	0.12	0.006	0.002	0.00003	0.0000036
	モノオル		5.6			-	0.0001677
	Total DL-PO		17				0.1562377
- 3	Total (PCDDs+PCDFs+DL-PC	Bs) 12	110			-	1.0

備考 1.実測濃度の括弧付きの数値は、検出下限値以上で定量下限値未満の濃度であることを示す。

- 2.実測濃度の"ND"は、検出下限値未満であることを示す。
 3.毒性等価係数(TEF)は、WHO-TEF(2006)を適用した。
 4.毒性当量TEQは、定量下限値未満の実測濃度を0(を口)として算出したものである。
- 5.試料の採取量は、2.1681m3である。
- 6.酸素濃度の平均値は、20.3%である(酸素濃度が20%を超える場合は20%として換算する)。 7.各濃度は個別に桁まるめを行うため、表記上各Total値が合わなくなる場合がある。

2. ガスクロマトグラフ質量分析計の測定条件

1. [Method1]

①測定装置: Agilent 6890 Series Gas Chromatograph-AutoSpec Premier

②GC条件

カラム:BPX-DXN (SGE 社製) 0.25 mm×60 m

昇温条件:150℃ (1 min)

150°C→220°C 20°C/min 220°C→260°C 2°C/min 260°C→320°C 5°C/min

320℃

hold(3.5 min)

注入口温度:300℃ キャリアガス:ヘリウム 試料注入量:1.0μL

2. [Method2]

①測定装置: Agilent 6890 Series Gas Chromatograph-AutoSpec Premier

②GC条件

カラム: RH-12ms (INVENTX 社製) 0.25 mm×60 m

昇温条件:150℃ (1 min)

150°C→210°C 10°C/min 210°C→280°C 3°C/min 280°C→320°C 10°C/min 320°C hold(10 min)

注入口温度:300℃ キャリアガス:ヘリウム 試料注入量:1.0μL

3. MS の条件

分解能: 10,000以上 イオン化電流: 0.75 mA イオン源温度: 300℃

検出方法 : ロックマス方式によるSIM 法